Docsright arrowTelepresenceright arrow2.16right arrowLaptop-side configuration

14 min • read

Laptop-side configuration

There are a number of configuration values that can be tweaked to change how Telepresence behaves. These can be set in two ways: globally, by a platform engineer with powers to deploy the Telepresence Traffic Manager, or locally by any user. One important exception is the location of the traffic manager itself, which, if it's different from the default of ambassador, must be set locally per-cluster to be able to connect.

Global Configuration

Global configuration is set at the Traffic Manager level and applies to any user connecting to that Traffic Manager. To set it, simply pass in a client dictionary to the helm install command, with any config values you wish to set.

Values

The client config supports values for timeouts, logLevels, images, cloud, grpc, dns, and routing.

Here is an example configuration to show you the conventions of how Telepresence is configured: note: This config shouldn't be used verbatim, since the registry privateRepo used doesn't exist

Timeouts

Values for client.timeouts are all durations either as a number of seconds or as a string with a unit suffix of ms, s, m, or h. Strings can be fractional (1.5h) or combined (2h45m).

These are the valid fields for the timeouts key:

FieldDescriptionTypeDefault
agentInstallWaiting for Traffic Agent to be installedint or float number of seconds, or duration string2 minutes
applyWaiting for a Kubernetes manifest to be appliedint or float number of seconds, or duration string1 minute
clusterConnectWaiting for cluster to be connectedint or float number of seconds, or duration string20 seconds
interceptWaiting for an intercept to become activeint or float number of seconds, or duration string5 seconds
proxyDialWaiting for an outbound connection to be establishedint or float number of seconds, or duration string5 seconds
trafficManagerConnectWaiting for the Traffic Manager API to connect for port forwardsint or float number of seconds, or duration string20 seconds
trafficManagerAPIWaiting for connection to the gPRC API after trafficManagerConnect is successfulint or float number of seconds, or duration string15 seconds
helmWaiting for Helm operations (e.g. install) on the Traffic Managerint or float number of seconds, or duration string2 minutes

Log Levels

Values for the client.logLevels fields are one of the following strings, case-insensitive:

  • trace
  • debug
  • info
  • warning or warn
  • error

For whichever log-level you select, you will get logs labeled with that level and of higher severity. (e.g. if you use info, you will also get logs labeled error. You will NOT get logs labeled debug.

These are the valid fields for the client.logLevels key:

FieldDescriptionTypeDefault
userDaemonLogging level to be used by the User Daemon (logs to connector.log)loglevel stringdebug
rootDaemonLogging level to be used for the Root Daemon (logs to daemon.log)loglevel stringinfo

Images

Values for client.images are strings. These values affect the objects that are deployed in the cluster, so it's important to ensure users have the same configuration.

Additionally, you can deploy the server-side components with Helm, to prevent them from being overridden by a client's config and use the mutating-webhook to handle installation of the traffic-agents.

These are the valid fields for the client.images key:

FieldDescriptionTypeDefault
registryDocker registry to be used for installing the Traffic Manager and default Traffic Agent. If not using a helm chart to deploy server-side objects, changing this value will create a new traffic-manager deployment when using Telepresence commands. Additionally, changing this value will update installed default traffic-agents to use the new registry when creating a new intercept.Docker registry name stringdocker.io/datawire
agentImage$registry/$imageName:$imageTag to use when installing the Traffic Agent. Changing this value will update pre-existing traffic-agents to use this new image. The registry value is not used for the traffic-agent if you have this value set.qualified Docker image name string(unset)
webhookRegistryThe container $registry that the Traffic Manager will use with the webhookAgentImage This value is only used if a new traffic-manager is deployedDocker registry name stringdocker.io/datawire
webhookAgentImageThe container image that the Traffic Manager will pull from the webhookRegistry when installing the Traffic Agent in annotated pods This value is only used if a new traffic-manager is deployednon-qualified Docker image name string(unset)

Cloud

Values for client.cloud are listed below and their type varies, so please see the chart for the expected type for each config value. These fields control how the client interacts with the Cloud service.

FieldDescriptionTypeDefault
refreshMessagesHow frequently the CLI should communicate with Ambassador Cloud to get new command messages, which also resets whether the message has been raised or not. You will see each message at most once within the duration given by this configduration string168h
systemaHostThe host used to communicate with Ambassador Cloudstringapp.getambassador.io
systemaPortThe port used with systemaHost to communicate with Ambassador Cloudstring443

Telepresence attempts to auto-detect if the cluster is capable of communication with Ambassador Cloud, but in cases where only the on-laptop client wishes to communicate with Ambassador Cloud Telepresence may still prompt you to log in.

Reminder: To use personal intercepts, which normally require a login, you must have a license key in your cluster and specify which agentImage should be installed by also adding the following to your config.yml:

Air-gapped clients

If your laptop is on an isolated network, you will need an air-gapped license in your cluster. Telepresence will check for this license before requiring a login.

Grpc

The maxReceiveSize determines how large a message that the workstation receives via gRPC can be. The default is 4Mi (determined by gRPC). All traffic to and from the cluster is tunneled via gRPC.

The size is measured in bytes. You can express it as a plain integer or as a fixed-point number using E, G, M, or K. You can also use the power-of-two equivalents: Gi, Mi, Ki. For example, the following represent roughly the same value:

RESTful API server

The client.telepresenceAPI controls the behavior of Telepresence's RESTful API server that can be queried for additional information about ongoing intercepts. When present, and the port is set to a valid port number, it's propagated to the auto-installer so that application containers that can be intercepted gets the TELEPRESENCE_API_PORT environment set. The server can then be queried at localhost:<TELEPRESENCE_API_PORT>. In addition, the traffic-agent and the user-daemon on the workstation that performs an intercept will start the server on that port. If the traffic-manager is auto-installed, its webhook agent injector will be configured to add the TELEPRESENCE_API_PORT environment to the app container when the traffic-agent is injected. See RESTful API server for more info.

DNS

The client.dns configuration offers options for configuring the DNS resolution behavior in a client application or system. Here is a summary of the available fields:

The fields for client.dns are: localIP, excludeSuffixes, includeSuffixes, and lookupTimeout.

FieldDescriptionTypeDefault
localIPThe address of the local DNS server. This entry is only used on Linux systems that are not configured to use systemd-resolved.IP address stringfirst nameserver mentioned in /etc/resolv.conf
excludeSuffixesSuffixes for which the DNS resolver will always fail (or fallback in case of the overriding resolver). Can be globally configured in the Helm chart.sequence of strings[".arpa", ".com", ".io", ".net", ".org", ".ru"]
includeSuffixesSuffixes for which the DNS resolver will always attempt to do a lookup. Includes have higher priority than excludes. Can be globally configured in the Helm chart.sequence of strings[]
lookupTimeoutMaximum time to wait for a cluster side host lookup.duration string4 seconds

Here is an example values.yaml:

Mappings

Allows you to map hostnames to aliases. This is useful when you want to redirect traffic from one service to another within the cluster.

In the given cluster, the service named postgres is located within a separate namespace titled big-data, and it's referred to as psql :

Exclude

Lists service names to be excluded from the Telepresence DNS server. This is useful when you want your application to interact with a local service instead of a cluster service. In this example, "redis" will not be resolved by the cluster, but locally.

Routing

AlsoProxySubnets

When using alsoProxySubnets, you provide a list of subnets to be added to the TUN device. All connections to addresses that the subnet spans will be dispatched to the cluster

Here is an example values.yaml for the subnet 1.2.3.4/32:

NeverProxySubnets

When using neverProxySubnets you provide a list of subnets. These will never be routed via the TUN device, even if they fall within the subnets (pod or service) for the cluster. Instead, whatever route they have before telepresence connects is the route they will keep.

Here is an example kubeconfig for the subnet 1.2.3.4/32:

Using AlsoProxy together with NeverProxy

Never proxy and also proxy are implemented as routing rules, meaning that when the two conflict, regular routing routes apply. Usually this means that the most specific route will win.

So, for example, if an alsoProxySubnets subnet falls within a broader neverProxySubnets subnet:

Then the specific alsoProxySubnets of 10.0.5.0/24 will be proxied by the TUN device, whereas the rest of 10.0.0.0/16 will not.

Conversely, if a neverProxySubnets subnet is inside a larger alsoProxySubnets subnet:

Then all of the alsoProxySubnets of 10.0.0.0/16 will be proxied, with the exception of the specific neverProxySubnets of 10.0.5.0/24

Local Overrides

In addition, it is possible to override each of these variables at the local level by setting up new values in local config files. There are two types of config values that can be set locally: those that apply to all clusters, which are set in a single config.yml file, and those that only apply to specific clusters, which are set as extensions to the $KUBECONFIG file.

Config for all clusters

Telepresence uses a config.yml file to store and change those configuration values that will be used for all clusters you use Telepresence with. The location of this file varies based on your OS:

  • macOS: $HOME/Library/Application Support/telepresence/config.yml
  • Linux: $XDG_CONFIG_HOME/telepresence/config.yml or, if that variable is not set, $HOME/.config/telepresence/config.yml
  • Windows: %APPDATA%\telepresence\config.yml

For Linux, the above paths are for a user-level configuration. For system-level configuration, use the file at $XDG_CONFIG_DIRS/telepresence/config.yml or, if that variable is empty, /etc/xdg/telepresence/config.yml. If a file exists at both the user-level and system-level paths, the user-level path file will take precedence.

Values

The config file currently supports values for the timeouts, logLevels, images, cloud, and grpc keys. The definitions of these values are identical to those values in the client config above.

Here is an example configuration to show you the conventions of how Telepresence is configured: note: This config shouldn't be used verbatim, since the registry privateRepo used doesn't exist

Workstation Per-Cluster Configuration

Configuration that is specific to a cluster can also be overriden per-workstation by modifying your $KUBECONFIG file. It is recommended that you do not do this, and instead rely on upstream values provided to the Traffic Manager. This ensures that all users that connect to the Traffic Manager will have the same routing and DNS resolution behavior. An important exception to this is the manager.namespace configuration which must be set locally.

Values

The kubeconfig supports values for dns, also-proxy, never-proxy, and manager.

Example kubeconfig:

Manager

This is the one cluster configuration that cannot be set using the Helm chart because it defines how Telepresence connects to the Traffic manager. When not default, that setting needs to be configured in the workstation's kubeconfig for the cluster.

The manager key contains configuration for finding the traffic-manager that telepresence will connect to. It supports one key, namespace, indicating the namespace where the traffic manager is to be found

Here is an example kubeconfig that will instruct telepresence to connect to a manager in namespace staging: